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Abstract
The improvement in positioning precision that can be expected from extending the GPS constellation with Galileo  
satellites will be treated in this paper. The influence of the pure geometric aspect, i.e. the effect of having more  
available satellites, will be assessed, while the effect of the availability of new signals will be ignored. From this  
point of view, two scenarios have been studied: (1) the case of stand-alone positioning, typically based on code  
observables,  and  (2)  the  case  of  relative  positioning,  typically  based  on  double  difference  carrier  phase 
observables.
The results show that the use of the additional Galileo constellation improves absolute positioning with about  
40% in terms of formal errors when simulating urban conditions. For relative positioning, the concept of Relative  
Dilution of Precision (RDOP) allowed to demonstrate that using GPS+Galileo only half the observation time is  
sufficient to get similar precisions as with GPS only.

Introduction

The  future  European  GNSS,  Galileo,  is  designed  to  be  interoperable  with  GPS.  Moreover  the 
combination of Galileo and GPS will  provide faster,  more reliable and more precise positioning in 
comparison with present results obtained using GPS only. Positioning at locations with bad visibility 
will  become feasible  as twice  as  much satellites  will  be  visible.  The enhanced geometry will  also 
improve the precision of positioning. Moreover, in the future, modernized GPS and Galileo will emit 
signals on 3 frequencies whereas the current GPS system uses only 2 carrier frequencies. This extra 
frequency will allow a better correction of the atmospheric disturbances, one of the most important error 
sources for high accuracy positioning.
The new Galileo system will comprise a constellation of 30 satellites (27 operational and 3 spares) 
distributed over three circular orbits at an orbital altitude of nearly 24.000 km above the semi-major axis 
of the WGS84 reference ellipsoid. Galileo uses the same positioning techniques as those used by GPS. 
But to make fully use of the new GPS and Galileo signals and enhance positioning, algorithms must be 
adjusted or created to take the new signals into account.

This paper studies the effect of the geometry of the future GPS+Galileo constellation on the precision of 
the estimated positioning parameters and makes a comparison with the current positioning based on 
GPS.  The  computations  are  design  studies  only  based  on  the  geometry  of  the  GPS  and  Galileo 
constellations. The GPS orbits have been created using the broadcast navigation message, while Galileo 
orbits were simulated for 27 operational satellites using following orbital parameters: a semi-major axis 
of 29.994 km, an inclination angle of 56°, the eccentricity equal to 0, right ascension angles of -120°, 0° 
and 120°, a rate of right ascension of 0° a day, the argument of perigee equal to 0°, a mean anomaly 
with -160°, -120°, -80°, -40°,  0°,  40°,  80°, 120°,  160° as possible values, and finally a period of  
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14 h 4 min 42s. We also assume that the GPS and Galileo code observables have the same standard 
deviation as well as the GPS and Galileo phase observables.

1. Increase of visibility – twice as much satellites

In a first step, the increase of the number of visible satellites from any given receiver position on earth is 
examined. Figure 1 shows the daily mean of the number of visible satellites for any point on the earth’s 
ellipsoid.  Using an elevation cut  off  angle  of  0º,  these  mean values are  computed using a  grid  of 
10º×10º. For the first plot, only the GPS system was considered, while the second plot represents the 
results for the combined GPS + Galileo systems. The GPS system provides a worldwide mean of about 
10 to 12 visible satellites over a day. For the combined system, an increased worldwide distribution of 
visible satellites, more precisely 21 to 23, is seen.

(a) (b)
Figure 1 : Worldwide distribution of the daily mean of visible satellites using a 0° cut off,

(a) GPS only
(b) combined GPS+GALILEO

(a) (b)
Figure 2 : using a 30° cut off,

(a) Worldwide distribution of the daily mean of visible GPS satellites
(b) Daily number of visible satellites in Reykjavik for all systems
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Adding Galileo to GPS will  make especially a difference when we have a blocked horizon (e.g. in 
cities).  In this case, a  cut off of 30º is representative. Figure 2a emphasizes locations where point-
positioning is not possible due to a lack of visible satellites at  certain epochs using GPS only. An 
example of  such a  problem location is  shown in  Figure  2b,  which shows a plot  of  the number of 
satellites visible over a day in the EPN station at Reykjavik, Iceland. We can see that there are epochs 
where only 2 or 3 satellites are visible, making it impossible to calculate a position. With Galileo only, a 
minimum of at least 4 satellites is always visible (even in our conservative case where we did not 
consider  the  3  spare  satellites),  whereas  the  combined  system always  provides  more  than  enough 
satellites.

2. Stand-alone positioning based on code observables

Stand-alone positioning using GPS code observables is utterly useful for navigation applications with a 
precision  of  several  meters.  At  any  time,  the  code  observable  Rp

i  is  obtained  by  measuring  the 
transmission time i

pτ  of the code emitted by satellite i  and received by receiver p . This transmission 
time is the difference between time of arrival (measured on the receiver clock) and time of emission 
(measured on the satellite clock) of the signal, and can also be characterized as follows:
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with ρ p
i  the approximate geometric distance between satellite i  and receiver p , c  the speed of light, 
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i  the respective tropospherical and ionospherical delays and finally  i
pMP  representing the 

multipath  errors  and  the  delay  of  the  electromagnetic  signal  while  passing  through  the  receiver 
hardware. The pseudo-range measurement at time  t  can be represented by the following observation 
equation:
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with )(tpδ en )(tiδ the respective receiver and satellite clock errors and pRε  the measurement noise.

This study considers an ‘ideal’ positioning environment, free of the typical errors affecting positioning. 
This means that we neglect the ionospheric and tropospheric errors I p

i  and Tp
i  , as well as the multipath 

errors.  We  assume  the  satellite  clock  error  )(tiδ  to  be  known and  equal  to  0,  and  consider  the 
simulated Galileo orbits and the orbits given by the GPS navigation message as correct.

This  simplified  pseudo-range  observation  equation  can  not  be  solved  immediately  for  the  position 
coordinates,  but  has to be linearized first.  Having an a priori  receiver position  ),,( opopop ZYX ,  the 
unknown receiver position ),,( ppp ZYX  can be written as ppp XXX ∆+= 0 , idem for pY  and pZ . 
Next,  linearization  by  a  Taylor  series  expansion  will  be  made  around  ( )ppp ZYX ∆∆∆ ,, ,  those 
parameters becoming our new unknowns. Consequently the pseudo-range observation model becomes:

pRppi
op

op
i

pi
op

op
i

pi
op

op
i

i
op

i
p tcZ

t
tZtZ

Y
t

tYtY
X

t
tXtX

ttR εδ
ρρρ

ρ +−∆
−

−∆
−

−∆
−

−=− )(
)(

)()(
)(

)()(
)(

)()(
)()(

(3)
)(ti

opρ  is the approximate geometric distance between satellite i  and receiver p  calculated with the a 
priori receiver position. Writing Equation (3) in matrix notations gives vAXL += , with X  the vector 

),,,( pppp ZYX δ∆∆∆  of  the  unknowns.  Each  element  of  the  observations  vector  L  equals 
)()( ttR i

op
i
p ρ−  and  the  design  matrix  A  consists  of  the  coefficients  of  the  unknowns  in  each 

observation equation. Finally, v  is the vector of the residuals.
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Given the positions of the visible satellites, the observation equation system can be solved using the 
Least Squares Method.  Minimizing the weighted sum of the residuals  )( PvvT ,  results  in the Least 
Squares Solution PLAPAAX TT 1)( −= . The weight matrix P is defined as 12

0
−− Σ= LP σ  with 2

0σ  the a 
priori  variance  and  1−Σ L  the  inverse  of  the  covariance  matrix  of  the  observations.  For  code-based 
positioning,  we  will  consider  a  unit  matrix  as  the  covariance matrix  of  the  observations  LΣ . The 
covariance matrix of the unknowns is 111 )()( −−− =Σ=Σ AAAA T

L
T

X , and its diagonal elements provide 
us information on the formal errors of the estimated parameters.
After transforming the matrix  XΣ  into its topocentric equivalent covariance matrix, using the law of 
variance propagation, we obtain
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with R the rotation matrix.
This covariance matrix depends only on the geometry of the visible satellites and allows to extract 
Dilution of Precision ( )DOP  values (Husti, 2000):
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referring  respectively  to  the  horizontal  component,  the  vertical  component  and  the  3-dimensional 
positioning.

Figure 3 shows the worldwide  HDOP  values in simulated urban conditions with a cut off angle of 
30°.

(a) (b)
Figure 3 : Worldwide distribution of the daily median of HDOP value using a 30° cut off

(a) GPS only
(b) combined GPS+GALILEO
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To eliminate the influence of HDOP  outliers, median values are shown instead of means. The results 
for the combined system show HDOP  values below 1.5. For GPS only, most of the worldwide values 
are  less  than  2.5.  That  seems  to  be  a  good  value,  but  for  some  locations  problems  occur  when 
considering the HDOP  value over the whole day. As an example, the daily evolution of the HDOP  
value for the EPN station Zelenchukskaya in Russia, is showed in Figure 4b. This station was chosen 
because in  Figure 3a as well as in  Figure 4a, it lies respectively in an area with high –nevertheless 
acceptable– median HDOP  values and in an area with huge mean HDOP  values.

(a) (b)
Figure 4 : using a 30° cut off

(a) Worldwide distribution of the daily mean of the HDOP value with GPS
(b) Daily distribution of HDOP value in Zelenchukskaya for all systems

In Zelenchukskaya, very huge daily mean HDOP  values of 51.47 and 721.66 have been observed for 
both GPS only and Galileo only. These very bad values are caused by a lack of visible satellites at 
certain epochs, explaining the outliers )20( >HDOP  also visible in Figure 4b. Respectively 1 and 15 
outliers for GPS only and Galileo only are visible in Figure 4b. On the other hand for the hybrid system, 
no  outliers  and  not  even  HDOP  values  over  3  were  observed,  yielding  a  very  good daily  mean 
HDOP  value of 1.33.

(a) (b)
Figure 5 : using a 30° cut off

(a) Worldwide distribution of improvement ratio for daily median of the HDOP value
(b) Worldwide distribution of improvement ratio for daily median of the VDOP value
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Going back to the results showed in Figure 3, we conclude that the worldwide decrease of HDOP  from 
less than 2.5 to less than 1.5, corresponds with an improvement of about 40% on the formal errors of the 
horizontal  components  of  the  station  position  when  using  a  combined  GPS+Galileo  constellation 
compared to GPS only (see  Figure 5a).  Figure 5b shows the worldwide improvement for the  VDOP  
which is similar to the HDOP  results.

3. Relative positioning, based on double difference carrier phase observables

Relative  positioning  differs  from  absolute  positioning  because  the  vector ( ) ( )qpqpqppqpqpq ZZYYXXZYX −−−= ,,,,  between two receivers p  and q  is calculated instead 
of  one  single  receiver  position.  Relative  positioning  requires  the  introduction  of  single  and  double 
differences  ( )DDSD & .  These differences decrease or eliminate the influence of some of the error 
sources. The DD  carrier phase observation equation between receivers p  and q  and satellites i  and 
j  is:
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with  ij

pqΦ  the  DD  of  the carrier  phase  observable,  ij
pqρ  the  DD  of  the  approximate  geometric 

distances between satellites  i  and j  and receivers p  and q ,  λ  the wavelength of the signal, while 
ij
pqN  is the DD  of the integer initial ambiguities. The first order differential ionospheric effect ij

pqI  is 
eliminated  because  we  assume the  use  of  an  ionosphere  free  combination.  On the  other  hand the 
tropospherical delay  ij

pqT  is considered known. All other error sources, e.g. multipath, are part of the 
measurement noise.

Similar to absolute positioning, the carrier phase observation Equation (6) is linearized in order to solve 
for  the  unknown  parameters.  Once  more,  the  receiver  position  will  be  written  as 

( )RRRRRRRRR ZZYYXXZYX ∆+∆+∆+= 000 ,,),,(  given  an  a  priori  estimated  position 
),,( oRoRoR ZYX .  Further,  Taylor  series  expansion  will  be  executed  around  ( )ppp ZYX ∆∆∆ ,,  and 

( )qqq ZYX ∆∆∆ ,,  for respective terms belonging to receivers  p  and  q .  Taking receiver  p  as the 
reference station, its coordinates are known and consequently 0=∆=∆=∆ ppp ZYX . In this test, we 
consider the initial ambiguities ij

pqN  as being fixed, yielding to following observation model:
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The coefficients )(ta ij
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Zq  of the unknowns, are then given as:
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Every observation can be written as Equation (7), yielding a model represented by the matrix equation 

vAXL += . X  is the vector ( )qqq ZYX ∆∆∆ ,,  of the unknowns, A  the design matrix containing all 
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coefficients of the unknowns,  L  the vector containing all observations and finally  v  is the vector of 
residuals.

Using the observation model from Equation (7), we can compute the associated covariance matrix of the 
unknowns 11 )( −−Σ=Σ AA L

T
X  and convert it to its topocentric equivalent TΣ , similar to what was done 

for absolute positioning. The covariance matrix of the observables  LΣ  is not a unit matrix, but the 
mathematical correlations between the double difference measurements are now taken into account.
Again, the covariance matrix of the unknowns provides information on the precision of the solution. 
The RDOP  (Relative DOP ) is similar to the PDOP  value for the case of absolute positioning, but 
will be calculated in a different way with the formula (Goad, 1988):

( )
2
DD

XtraceRDOP
σ

Σ
=

(9)
In addition, contrary to the computation of the PDOP , the observations will now be accumulated over 
sessions varying between ½ and 24 hours, using a 60 seconds measurement interval. Going back to 
formula (9), DDσ  is the uncertainty of a DD  measurement. This definition implies that the RDOP  will 
not depend on the a priori variance 2σ  of the carrier phase measurements. For the matrix XΣ  as well 
as for the value 2

DDσ , a factor 2σ  can be set apart, whereas those factors appearing in denominator and 
nominator of Equation (9) can be removed. Consequently, we will not have to make assumptions about 
this value. The units of RDOP  are meters/cycle. Theoretically, the uncertainty of a DD  measurement 
multiplied by RDOP  will therefore yield a relative position error. 

Following the same principle as for HDOP  and VDOP , we considered north, east and up components 
for RDOP . We have chosen two sets of baselines between EPN stations, long distances of about 1000-
4500km (Figure  6a)  and  short  distances  of  about  40-350km (Figure  6b),  each  set  of  observations 
divided in three kinds of pairs: stations with equal latitude, stations with equal longitude and randomly 
chosen pairs. The observations accumulated over sessions of 12 hours show the same improvement for 
north, east  as well  as for  up components.  This improvement is  about  30% for both long and short 
baselines in comparison with previous results obtained for GPS only.
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(a) North component (b) North component

(a) East component (b) East component

(a) Up component (b) Up component
Figure 6 : RDOP improvement ratio

(a) For baselines of about 1000-4500 km
(b) For baselines of about 40-350 km
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Another interesting result is that the same RDOP values can be obtained for the hybrid system in 
only half of the observation time needed when using GPS only. Table 1 illustrates this result for 
the example EPN-stations Brussels and La Palma.

tijdsinterval RDOP_gps RDOP_gg
1/2 u 0.2439 0.1733
1 u 0.1788 0.1188

3/2 u 0.1326 0.0918
2 u 0.1141 0.0794
6 u 0.0617 0.0438

12 u 0.0425 0.0303
18 u 0.0351 0.0248
24 u 0.0307 0.0215

Table 1 : RDOP values for GPS only and for the hybrid system for varying interval lengths

Conclusion

This paper compared the formal errors of absolute and relative positioning performed using a GPS only 
satellite  constellation  and  using  a  combined  GPS+Galileo  constellation.  As  expected,  using 
GPS+Galileo more visible satellites are available worldwide and the combined system reduces or even 
eliminates the presence of problem locations worldwide. 
Using the DOP values, we demonstrated that the contribution of the satellite  geometry to the total 
positioning error budget is reduced with about 40% only by adding the Galileo constellation to the GPS 
constellations. For relative positioning, we showed that the combined system reaches similar formal 
errors as stand-alone GPS, but using only half of the observation time in comparison with GPS only. As 
mentioned before, these results are only valid in an ideal environment because the effect of other error 
sources on the total error budget has been neglected. 
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