

Center of Excellence

Royal Observatory of Belgium

Space Weather products and studies based on EPN GNSS data at ROB

N. Bergeot, J.-M. Chevalier

C. Bruyninx, E. Pottiaux, Q. Baire, J. Legrand, P. Defraigne and W. Aerts

On-line products based on GNSS data

European Permanent Network (EPN)

- Continuously observing GNSS stations since 1996
- Presently: ~ 250 stations over Europe http://
- RT : Presently ~ 120 stations

Real-time data from the EUREF Permanent Network (EPN) provided by the ROB [- BKG] NTRIP broadcaster

[e.g. Söhne et al. 2010]

Ionospheric monitoring from EPN NRT GNSS data

$$P_2 - P_1 + DCB^s + DCB_r = 40.3 \left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right) \underline{STEC}$$

 $\underline{VTEC} = \underline{STEC} \times \cos(\alpha)$

1TECu = 10¹⁶e⁻.m⁻²

Products available on-line

Royal Observatory of Belgium GNSS Research Group

4	A.E	80	H	п	6	

Who we are Projects

RESEARCHØROB

Antarctica Troposphere Ionosphere Time Transfe

Atomium

DATA AND PRODUCTS

EPN Central Bureau

ROB Network Ionospheric Maps

Dynamic Static

TUTORIALS

CPS CLONASS GALLEO How CNSS Works Positioning & Timing GNSS Networks

Coordinate Systems Atmosphere

Ionosphere Troposphere

IONOSPHERIC MAPS
Contact: iono@oma.be

Last lonospheric Events

22/05/2012	: Ionospheric activity due to CME impact (more here)
12/04/2012	: lonospheric activity due to CME impact (more here)
16/03/2012	: Ionospheric activity due to CME impact (more here)
12/03/2012	: lonospheric activity due to CME impact (more here)
08/03/2012	: Ionospheric activity due to major CME impact (more here)
27/02/2012	: Ionospheric activity due to CME impact (more here)
22/01/2012	: lonospheric activity due to major CME impact (more here)

Near-Real Time Products

Vertical Total Electron Content (VTEC) estimated in Near Real-time (NRT) every 15 minutes from EUREF Permanent Network (EPN) GPS data. More

<u>Dynamic product</u>: interactive product which allows viewing VTEC maps at different epochs as a movie. (4-5 sec to load).

Static product: statistics to compare the ionosphere at a given epoch with respect to the 15 previous days.

http://www.gnss.be

DATA AND PRODUCTS

- **IONOSPHERIC MAPS**
 - **DYNAMIC**
 - STATIC

Products available on-line Median VTEC last 15 days 12:00-12:15 UTC

15

max-min=25.7

VTEC DOY 076 12:00-12:15 UTC

-15

-10

20

-30

-25 -20 -15 -10

-5 0

VTEC_{current}-VTEC_{median}

5 10

15 20

25

30

March 17th 2013 event

Statistical products

Prediction:

Median of the VTEC for the 15 previous days.

Products available on-line

More

http://www.gnss.be

DATA AND PRODUCTS

- **IONOSPHERIC MAPS** н.
 - DYNAMIC
 - STATIC

IONOSPHERIC EVENTS

Products available on-line

ftp://gnss.oma.be/

IONosphere map EXchange format (IONEX) [Schaer et al. 1998]

ftp://gnss.oma.be/gnss/products/IONEX/yyy/ddd/

File format : ROBRdddhmm.yyI.Z

- yyyy : year
- ddd : DOY
- h : UTC hour of the DOY (A = 00, B = 01 X = 23)
- mm : minutes of the hour (00,15,30 or 45)
- yy : last digit of the year (e.g. 13 presently)

e.g. ROBR136H45 .13I.Z

Near-real time ionospheric products DIAS, SWANS

Newsletters

STCE weekly ionospheric TEC time-series

Research

GNSS single frequency, radio science

Products under development

Ionospheric F2 layer ~ 300-400 km.

Transmitter

Medium Frequency (0.3-3MHz) High Frequency (3-30MHz)

Applications : Aviation, amateur radio

< foF2 = Reflexion > foF2 = Refraction

NRT – FoF2 each 15min. on a 0.5°x0.5° grid

L1 and L2 Signal to Noise Ration (SNR) = S1 S2 observables RINEX observations files

S1/S2 in dB-Hz for the two GPS frequency.

- L1= 1575.42 MHz
- L2= 1227.60 MHz

Frequencies emitted by the Sun 24-09-2011

Marqué et al. 2012

5

0

-5

-10

-15

-20

 $\Delta C/N_0$ drop (top) & estimated RHCP flux (bottom)

$F_{sun}[SFU] = N_0[W/Hz] \times \Delta C/N_0 / A_{eff}[m^2] / 10^{-22}$

Conclusions and perspectives

- NRT-VTEC ROB maps each 15min. (0.5°x0.5°). Latency 2-10 min.
- Use of EPN NRT GNSS data from ROB [& BKG] NTRIP Broadcaster.
- Products available on gnss.be

Densification of RT GNSS stations in Northern Part of Europe. Increase of S/N data in RT.

• Products under development (S/N, foF2).

iono@gnss.be

ftp://gnss.oma.be/

http://www.gnss.be

SPACE WEATHER EFFECTS ON HF AND TRANS-IONOSPHERIC RADIO WAVE PROPAGATION

Ioanna Tsagouri, David Altadill, Nicolas Bergeot, Michael Pezzopane

http://www.stce.be/esww10/

Deadlines

Abstract submission: May 31, 2013

Registration early bird: Oct 1, 2013 Fair stand submission: Nov 1, 2013

Ionospheric activity Ionosphere (50-1000km):

- > First order of ionospheric state variation: Solar radiation (photoionization)
- Major disturbance in the ionospheric state: CME impact
 - Affects the radio waves propagation with respect to free electrons content
 - Error in GNSS positioning applications
 - Space weather research

Ionosphere and GPS data:

Total Electron Content (TEC)

$$I = \frac{40.3}{f^2} TEC$$

1TECu = 10¹⁶e⁻.m⁻²

Ionospheric activity Ionosphere (50-1000km):

- First order of ionospheric state variation: Solar radiation (photoionization)
- > Major disturbance in the ionospheric state: CME impact
 - Affects the radio waves propagation with respect to free electrons content
 - Error in GNSS positioning applications
 - Space weather research

Ionosphere and GPS data:

Total Electron Content (TEC)

1TECu = 10¹⁶e⁻.m⁻²

Products available on-line

ftp://gnss.oma.be/

IONosphere map EXchange format (IONEX) [Schaer et al. 1998]

1											S	START OF TEC MAP				
2013	1	5	7	13	30	0					E	POCH	OF CU	RRENT	MAP	
35.0 -15.0 25.0			0.5	450.	0					L	AT/LO	N1/LO	N2/DL	ON/H		
314	317	322	326	331	337	342	347	352	357	361	365	369	373	377	380	
384	386	388	390	391	392	393	393	393	394	395	397	400	403	406	409	
413	417	421	424	428	431	434	437	440	442	445	447	449	451	453	455	
457	459	460	461	462	463	464	465	466	467	468	469	469	470	471	472	
473	475	476	478	480	482	483	485	487	488	489	491	491	492	492	493	
493																
35.	.5 -1	5.0	25.0	0.5	450.	0					L	AT/LO	N1/LO	N2/DL	ON/H	
305	309	313	318	323	328	334	339	344	348	353	357	361	365	369	373	
377	380	382	383	384	386	387	387	388	389	391	393	395	398	401	404	
407	411	415	418	421	424	427	430	433	435	438	440	442	445	447	449	
451	452	454	455	456	456	457	458	459	460	461	462	463	464	464	465	
466	468	469	471	473	475	477	479	481	482	483	484	485	486	486	486	
486																
36.	.0 -1	5.0	25.0	0.5	450.	0					L	AT/LO	N1/LO	N2/DL	ON/H	
298	301	305	310	315	320	325	331	336	340	345	349	353	357	361	365	
369	372	375	377	378	379	380	381	382	384	386	388	390	393	396	399	
402	405	408	412	415	418	420	423	425	428	430	433	435	438	440	442	
444	446	447	448	449	450	451	452	453	454	455	456	456	457	458	458	
459	461	462	464	467	469	471	473	474	476	477	478	479	480	480	480	
480																
36.	.5 -1	5.0	25.0	0.5	450.	0					I	AT/LO	N1/LO	N2/DL	ON/H	
290	293	297	302	306	312	317	322	328	333	337	341	345	349	353	358	
362	365	368	370	371	373	374	375	376	378	380	383	386	388	391	394	
396	399	402	405	408	410	413	415	418	420	422	425	428	430	433	435	
437	439	440	442	443	444	445	446	447	447	448	449	450	450	451	452	
453	454	456	458	460	462	464	466	468	469	470	471	472	473	473	473	

Receiver Differential Code Biases

Receiver Differential Code Biases use in NRT

$$P_2 - P_1 + DCB^s + DCB_r = 40.3 \left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right) STEC$$

- □ Global Ionospheric Maps (GIM) of VTEC (5°x2.5°x2h, 2-9 TECu)
- CODE rapid products (~ 24h)
- □ ~120 globally distributed stations
- □ GLONASS and GPS constellations
- Linear interpolation in space and time

$DCB_r(j) =$

MEDIAN [$DCB_r(j-2)$, $DCB_r(j-3)$, $DCB_r(j-4)$, $DCB_r(j-5)$, $DCB_r(j-6)$]

Receiver Differential Code Biases

Products available on-line

2012-03-09 (day 069) from 12:00 to 12:15 UTC

International Reference Ionosphere NASA model iri.gsfc.nasa.gov IRI 2012 [Bilitza et al. 2011]

Empirical climatological ionospheric model

CODE Final GIMs - IONEX Bern ftp.unibe.ch [Schaer et al. 1998]

Post-processing of GNSS data (5-6 days) ~280 GNSS stations (GPS+GLONASS) 2.5°x5° - 2h Spher. Harmonics. (n,m=15)

International Reference Ionosphere NASA model iri.gsfc.nasa.gov IRI 2012 [Bilitza et al. 2011]

> IRI Very smooth

CODE Final GIMs - IONEX Bern ftp.unibe.ch [Schaer et al. 1998]

> CODG Slightly smooth

DOY 2012

DOY 2012

Products available on-line

IONOSPHERIC EVENT 2013-03-17

Contact: iono@qnss.be

SUMMARY OF THE EVENT: The ionosphere was disturbed over Europe the 17/03/2013 with an abnormal increase of Total Electron Content (TEC) followed by a decrease the 18/03/2013. These ionospheric disturbances were due to the Solar Coronal Mass Ejection (CME) of the 15/03/2013, altering the geomagnetic activity to its storm level (k=5) on the 17/03/2013 (more information at: www.sidc.be).

Figure 2: Map of the 3 locations

Figure 1 shows the time evolution of the <u>Vertical</u> <u>Total Electron Content</u> (VTEC) (**in red**) extracted from the near-real time VTEC maps at 3 different locations (Figure 2): a) Northern part (top), b) Brussels (middle) and c) Southern part (bottom). Also shown, the model based on the median from the 15 previous days (**in grey**).

About this event, see also:

- VTEC maps during this event: <u>here</u>
- Comparisons with the median of the last 15 days: <u>here</u>
- about the origin of the ionospheric disturbances: <u>www.sidc.be</u> and <u>www.swans.meteo.be</u>.

Time-series extracted from the NRT maps

Prediction Observations