INTEROPERABILITY OF THE GNSS'S FOR POSITIONING AND TIMING

A. Caporali , L. Nicolini University of Padova, Italy

Outlook

- Monitor 26 European GNSS sites with 5 different receivers (Javad, Leica, Septentrio, Topcon, Trimble)
- Questions to be addressed:
 - Offset among the time scales of different GNSS constellations? (Note: 3 m
 ☐ 10 ns: we observe biases of tens to hundreds of ns)
 - Do different receivers measure different offsets?
- Use own MATLAB software
- Focus on Glonass, Galileo, Beidou taking GPS as reference (QZSS could also be included but: 1 S/C only, few european stations track it, no SP3)

Input Data

- Static receivers -> sample at 15 min, synchronous with SP3 epochs;
 at each epoch solve for coords, clock, TZD
- Pseudoranges combined in iono free mode

	Carrier/Frequen	cy [MHz]	Coding i		
GPS	L1 (1575.42)	L2 (1227.60)	C1C	C2W	
Galileo*	E1 (1575.42)	E5b (1207.14)	C1	C7I/C7Q/C7X	I/NAV
	E1 (1575.42)	E5a (1176.45)	C1	C5I/C5Q/C5X	F/NAV
BeiDou	B1 (1561.098)	B2 (1207.14)	C1I	C7I	

According to Rinex version 3.02, tables 2, 4, 5.

(*) For Galileo we use E1-E5b (I/NAV)

	E11	E12	E14 ⁽²⁾	E18 ⁽²⁾	E19	E20 ⁽¹⁾	E22 ⁽²⁾	E26 ⁽²⁾
obs	% 0	\$\$\circ\$\cir		No.	\$\$\columbus 0	Š e		
brdm	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
sp3	٥			÷ 000	÷ 0			\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- (1) Unavailable
- (2) In Commissioning

Pseudo-range model for a combined multiGNSS positioning

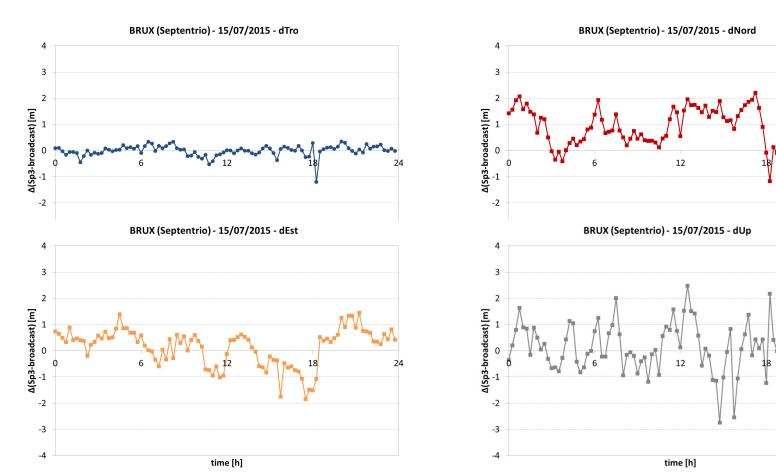
$$p(t) = \sqrt{[X(t') + \omega_e \cdot Y(t - t') - x]^2 + [Y(t') - \omega_e \cdot X(t - t') - y]^2 + [Z(t') - z]^2} + c \cdot dt(t') + c \cdot (TSC_X + dT_{Rec}) + \frac{TZD}{\sin(El)}$$

- t = time of reception; t' = time of trasmission; $\omega_e = \text{earth rotation rate}$
- TSC_X = Time System Correction of the X GNSS System (G = GPS; R = Glonass; E = Galileo; C = BeiDou) relative to an average time scale
- dT_{Rec} = Receiver Clock Error
- dt(t') = Satellite Clock Error + leap seconds (LS: full leap seconds for Glonass; 14 seconds for BeiDou).
 - Broadcast ephemeris: $dt(t') = a_0 + a_1 \cdot (t' T_{oc}) + a_2 \cdot (t' T_{oc})^2 \frac{2\sqrt{\mu a}}{c^2} e \cdot \sin E(t') + LS$
 - Sp3 ephemeris: input data
- TZD = Tropospheric Zenith Delay

$$GLGP = c \cdot (TSC_R + dT_{Rec}) - c \cdot (TSC_G + dT_{Rec})$$

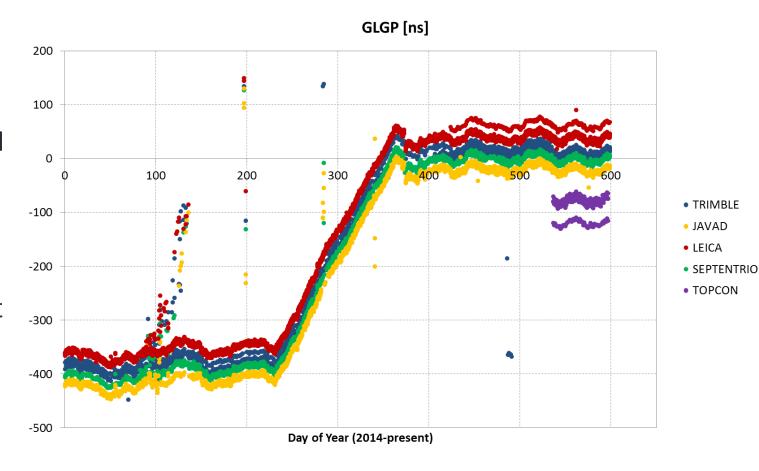
$$GPGA = c \cdot (TSC_E + dT_{Rec}) - c \cdot (TSC_G + dT_{Rec})$$

$$BDGP = c \cdot (TSC_C + dT_{Rec}) - c \cdot (TSC_G + dT_{Rec})$$

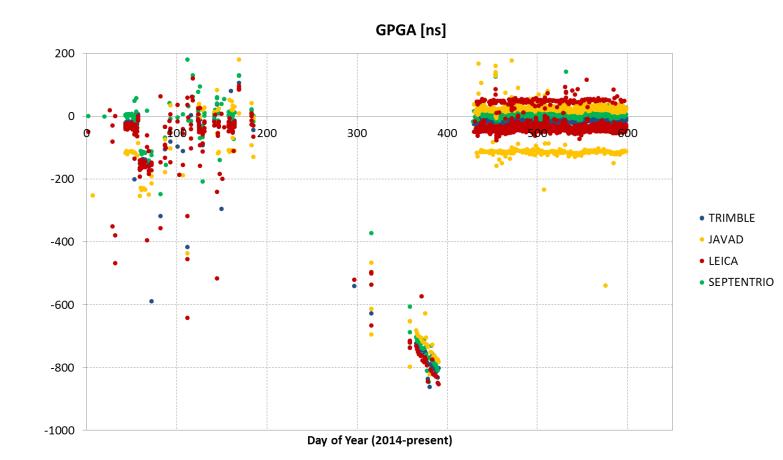

What we did:

- Testing the SP3 of GFZ
 - ✓ Processing the ionofree pseudoranges with broadcast and SP3(GFZ) yields differences in ZTD within few cm and position differences within 1 m rms
 - Computing the GLGP, GPGA and BDGP time biases with SP3(GFZ) and BRDC ephemeris indicates that the GFZ satellite clock is free of GNSS related time biases and provides a common time scale to within +/- 10 ns
- Using the average of four Septentrio receivers as "reference receiver" we estimate calibration constants for each receiver, that is receiver dependent (as opposed to GNSS dependent) time biases we need to apply to make the receiver equivalent (==unbiased) relative to the "reference receiver"
- Test the .bias sinex file uploaded by GFZ on the MGEX web site (site dependent biases): common sites appear to have similar receiver dependent biases, but an open question is the ephemeris used by GFZ (brdc or SP3?)

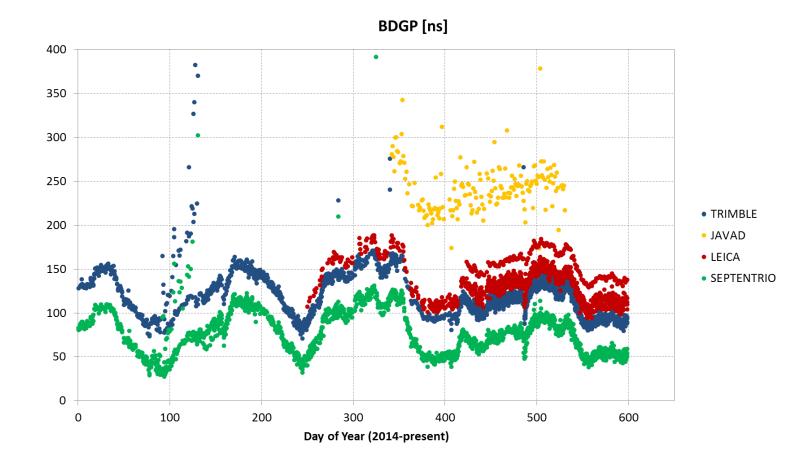
Broadcast vs sp3 differences in Position & TZD : < 1 m rms and < 0.1 m rms respectively


Broadcast & Sp3: ftp://cddis.gsfc.nasa.gov/

Broadcast: CONGO (./pub/gps/data/campaign/mgex/daily/rinex3/[yyyy]/[ddd]/[yy]p/brdm[ddd]0.[yy]p.Z) Sp3: GFZ (./pub/gps/products/mgex/[wwww]/gbm[wwww][d].sp3.Z)

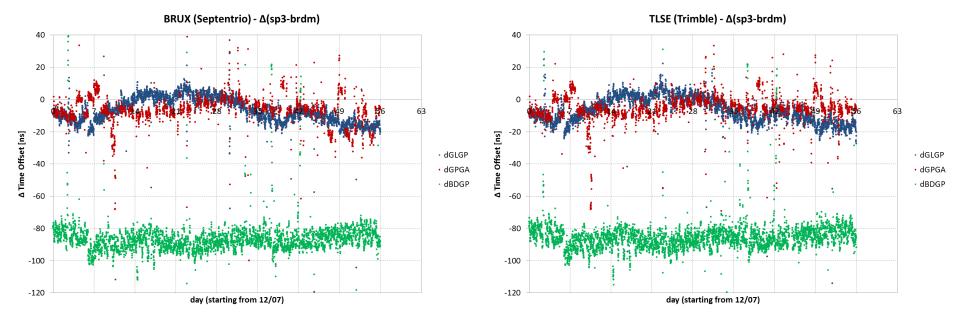

GLGP: Glonass to GPS Time Offset

- Large offset until summer 2014
- Offset steered to nearly zero
- However different receivers show different offsets
- Different sites
 with same
 type of
 receiver can
 have slightly
 biased offsets


GPGA: Galileo to GPS Time Offset

- Very good performance in 2015
- Receiver dependent biases are clearly visible

BDGP; BeiDou to GPS Time Offset


- Contrary to GPGA and GLGP, BDGP seems to vary in time periodically with a large mean value (80-100 ns)
- Receiver dependent biases and site dependent biases are visible

14/10/2015 Bern LAC Workshop **10**

Question: computing GLGP, GAGP, BDGP with broadcast or SP3: how big is the difference?

- dGLGP and dGPGA vary from -20 to +10 ns
- dBDGP vary between -100 and -80 ns, that is exactly the BDGP bias using broadcast ephemeris!
- This means that the GFZ Sp3 clock is a common 'interGNSS' time scale within +/- 10 ns
- This statement is receiver independent!

Receiver dependent biases

- We will now examine how different types of receivers introduce time biases for the various GNSS
- We will also see that the same receiver brand at different sites can have different bias (Firmware dependence? Antenna dependence? Receiver architecture dependence?)
- We will conclude by proposing a preliminary table of calibration coefficients for the time offsets relative to GPS, for each receiver relative to Septentrio (=mean of 4 receivers BRUX CEBR KIRU REDU)

dGLGP (Receiver - Septentrio)

Trimble: DLF1

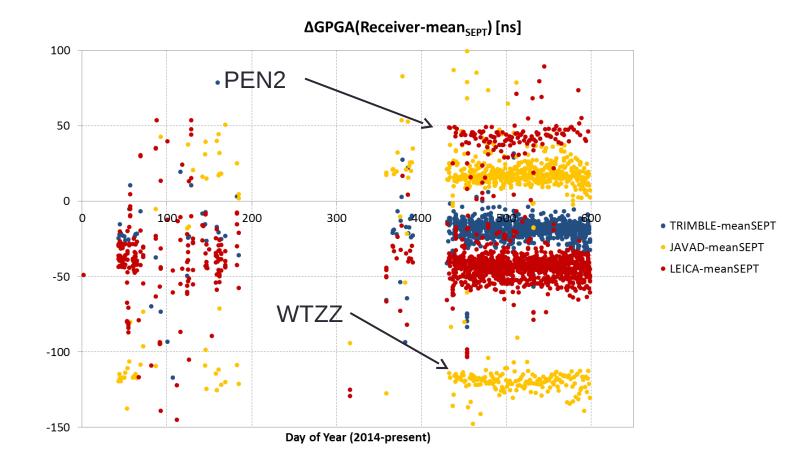
Leica: WROC

-150

WROC Topcon: IGMI, BOGO ΔGLGP(Receiver-mean_{SEPT}) [ns] 100 DLF1 50 TRIMBLE-meanSEPT JAVAD-meanSEPT LEICA-meanSEPT -50 TOPCON-meanSEPT **IGMI** -100 BOGC

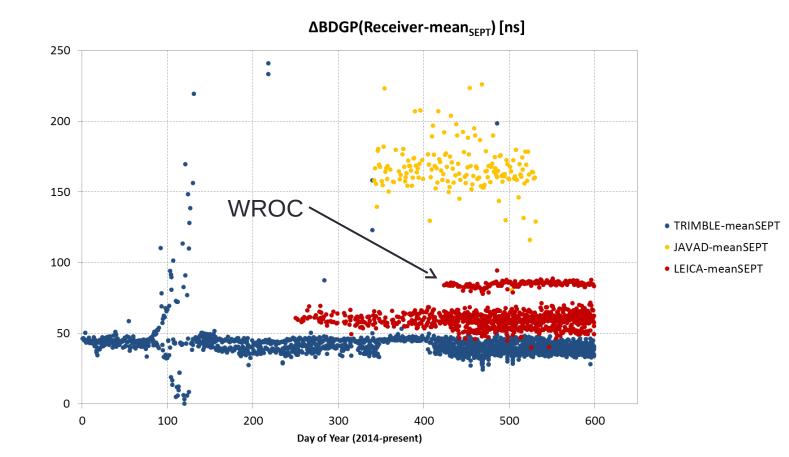
Day of Year (2014-present)

UNAVCO mail 25/08/2015: Septentrio Chosen as

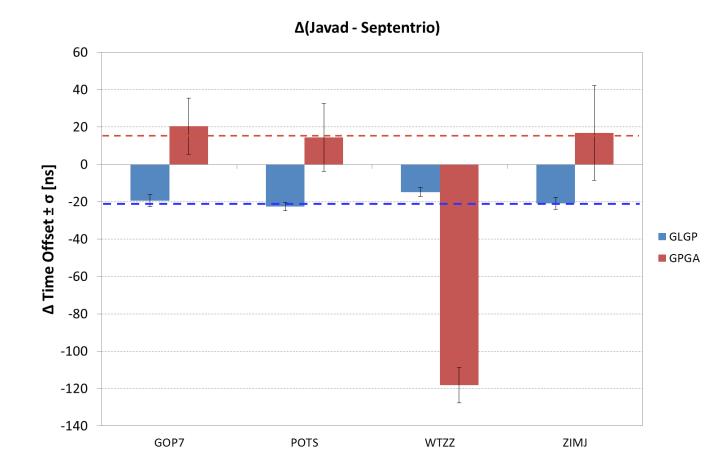

Preferred Vendor for Reference Stations

14/10/2015 Bern LAC Workshop **13**

dGPGA (Receiver - Septentrio)

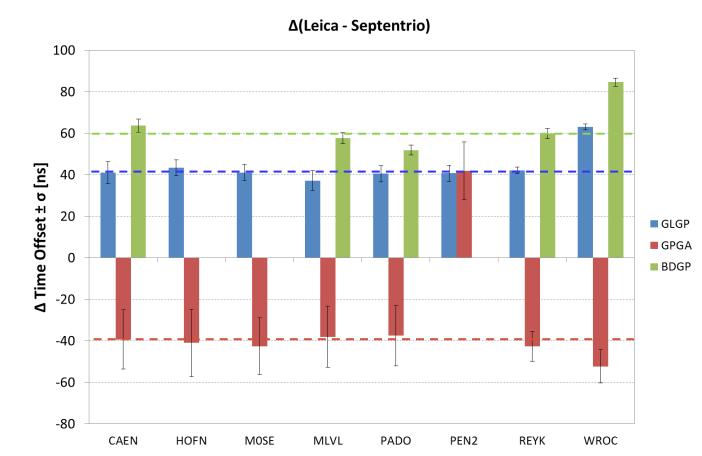

Javad: WTZZ

Leica: PEN2

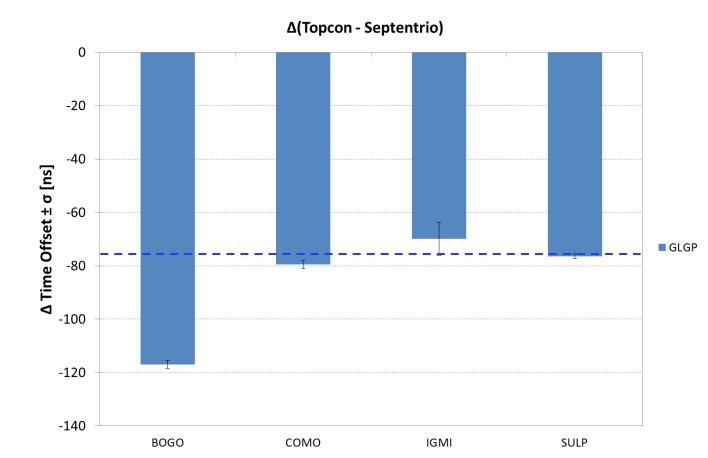

dBDGP (Receiver - Septentrio)

Leica: WROC

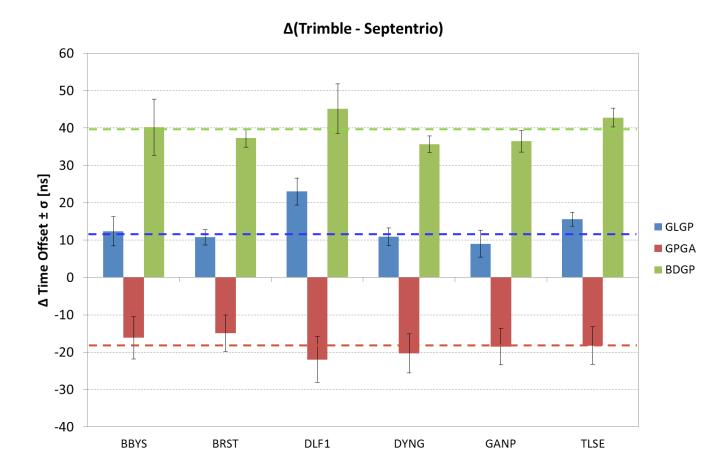
Javad - Septentrio


WTZZ: GPGA (WTZZ behaviour is due to bad tracking of E5b frequency)

Leica - Septentrio


• PEN2: GPGA

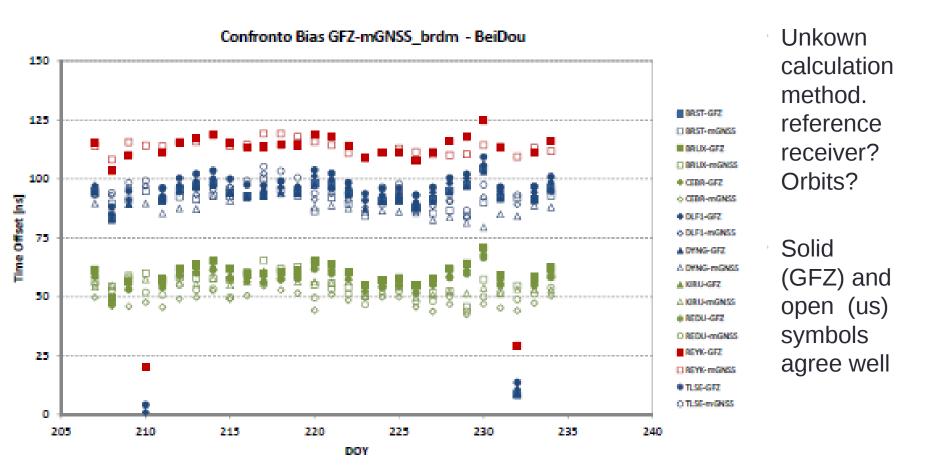
WROC: GLGP+GPGA+BDGP


Topcon - Septentrio

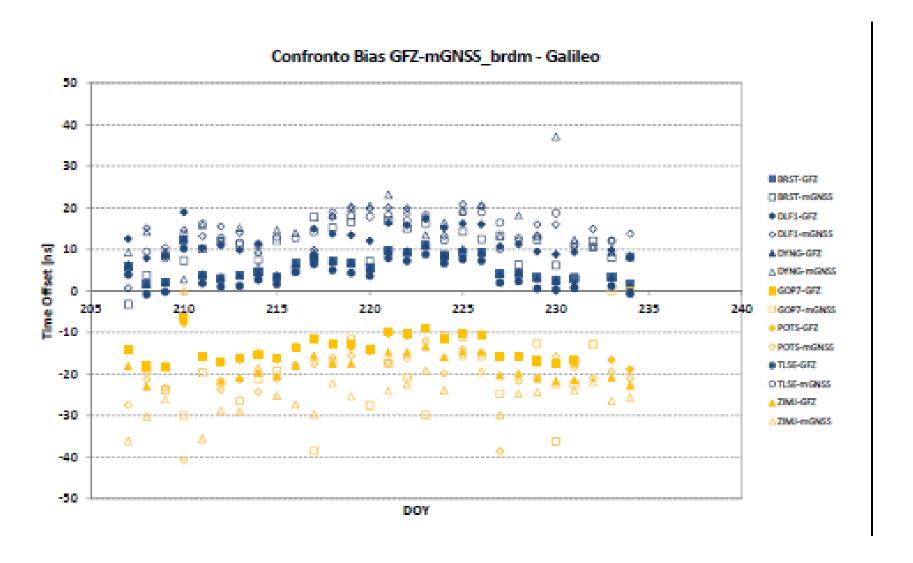
BOGO: GLGP

Trimble - Septentrio

DLF1: GLGP



Summary table


HOFN LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 43.4 ± 3.9 16.3 -42.6 ± 16.3 1.20.B1759/6.4 LEICA GR25 03 LEIAR25.R4 LEIT 41.1 ± 3.9 13.6 -38.0 ± 14.7 57.6 ± 2.52. LEICA GR25 3.11 TRM57971.00 NONE 37.2 ± 4.8 14.7 57.6 ± 2.52. LEICA GRX1200+G NSS 3.10.1633/6.403 LEIAR25.R4 NONE 40.5 ± 4.0 14.5 51.9 ± 2.52. LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 40.7 ± 3.9 13.9 13.9 14.8 ± 13.9 14.5 51.9 ± 2.52. LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 40.7 ± 3.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9	STATIO N	RECEIVER			ANTENNA		CALIBRATION [ns]			
Septentriago Sept	ID		TYPE	FIRMWARE		_	GLGP	GPGA	BDGP	
None										
POTS	GOP7	,				LEIT	-19.4 ± 3.2			
TRE_G3TH DELTA APR,08,2015 LEIAR25.R3 LEIT 2.4 9.5 16.9 ± 2.5.2 25.3 25	DOTC					NONE	225.24			
MTZZ JAVAD DELTA 3.4.9 3.4.9 16.9 ± 16.9 ± 2.4 2.5.2-esa3 JAVRINGANT DM NONE -20.8 ± 3.3 25.3	POIS	,			31	NONE				
TRE_G3TH Apr,18,2013 AVRINGANT DM NONE -20.8 ± 3.3 25	WTZZ		_		LEIAR25.R3	LEIT				
ZIMJ JAVAD DELTA Apr,18,2013 JAVRINGANT_DM NONE -20.8 ± 3.3 25.3 -39.3 ± 14.3 63.7 ± 3.										
CAEN LEICA GR25 3.11 TRM57971.00 NONE 41.0 ± 5.3 14.3 63.7 ± 3. 41.0 ± 14.0 ± 5.3 14.3 63.7 ± 3. 41.0 ± 14.0 ± 5.3 14.0 ± 14.0	ZIMI				JAVRINGANT DM	NONE	-20.8 ± 3.3			
HOFN LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 43.4 ± 3.9 16.3 MOSE LEICA GR25 03 LEIAR25.R4 LEIT 41.1 ± 3.9 13.6 MLVL LEICA GR25 3.11 TRM57971.00 NONE 37.2 ± 4.8 14.7 57.6 ± 2. PADO LEICA GR10 3.10.1633/6.403 LEIAR25.R4 NONE 40.5 ± 4.0 14.5 51.9 ± 2. GRX1200+G GRX1200+G NSS 8.51/6.110 LEIAR25.R4 LEIT 40.7 ± 3.9 13.9 REYK LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 40.7 ± 3.9 13.9 REYK LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 40.7 ± 3.9 13.9 REYK LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 42.1 ± 1.6 -42.6 ± 7.2 59.9 ± 2. WROC LEICA GR25 3.11.1639/6.44 LEIAR25.R4 LEIT 63.1 ± 1.5 8.1 84.7 ± 2. EPPTENTR O POLARX4TR 2.5.2 JAVRINGANT_DM NONE ± 8.1 ± 8.7 ± 7.0 SEPTENTR CEBR IO SEPTENTR								-39.3 ±		
HOFN LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 43.4 ± 3.9 16.3 3.20.B1759/6.4 LEIAR25.R4 LEIT 41.1 ± 3.9 13.6 -38.0 ± 13.6 -38.0 ± 14.7 57.6 ± 2.0	CAEN	LEICA	GR25	3.11	TRM57971.00	NONE	41.0 ± 5.3	14.3	63.7 ± 3.3	
MOSE LEICA GR25 3.11 TRM57971.00 NONE 37.2 ± 4.8 13.6 -38.0 ± 13.6 -38.0 ± 14.7 57.6 ± 2.5 14.5 51.9 ± 2.5 14.5 SEPTENTR RUX IO SEPTENTR CEBR IO SEPTENTR Updates in the following interesting interesting in the following interesting in										
MOSE LEICA GR25 03 LEIAR25.R4 LEIT 41.1 ± 3.9 13.6 -38.0 ± 14.7 57.6 ± 2.5	HOFN	LEICA	GR25		LEIAR25.R4	LEIT	43.4 ± 3.9			
MIVL LEICA GR25 3.11 TRM57971.00 NONE 37.2 ± 4.8 14.7 57.6 ± 2.7 14.5 14.5 51.9 ± 2.7 14.5 ± 2.7 14.5 ± 2.7 ±										
MLVL LEICA GR25 3.11 TRM57971.00 NONE 37.2 ± 4.8 14.7 57.6 ± 2.7 14.5 14.5 14.5 14.5 14.7 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	MOSE	LEICA	GR25	03	LEIAR25.R4	LEIT	41.1 ± 3.9			
PADO LEICA GR10 GRX1200+G PEN2 LEICA NSS REYK LEICA GR25 SEPTENTR BRUX IO SEPTENTR CEBR IO	N 4 1 3 7 1	LEICA	CDOF	2 11	TDM57071 00	NONE	27.2 . 4.0		F7.6 . 2.7	
PADO LEICA GR10 GRX1200+G GRX1200+G NSS REYK LEICA GR25 SEPTENTR BRUX IO SEPTENTR CEBR IO S	MLVL	LEICA	GR25	3.11	TRM5/9/1.00	NONE	37.2 ± 4.8		57.6 ± 2.7	
Column	ΡΔΟΟ	I FICΔ	GR10	3 10 1633/6 403	Ι FΙΔR25 R4	NONE	405+40		519+23	
REYK LEICA RSS 8.51/6.110 LEIAR25.R4 LEIT 40.7 ± 3.9 13.	IADO			3.10.1033/0.403	LLIANZ3.N4	INOINE	70.5 ± 4.0		31.3 ± 2.3	
REYK LEICA GR25 3.11.1639/6.403 LEIAR25.R4 LEIT 42.1 ± 1.6 -42.6 ± 7.2 59.9 ± 2. WROC LEICA GR25 03 LEIAR25.R4 LEIT 63.1 ± 1.5 8.1 84.7 ± 2. BRUX IO POLARX4TR 2.5.2 JAVRINGANT_DM NONE ± 8.1 ± 8.7 ± 7. SEPTENTR CEBR IO POLARX4 2.5.2-esa3 SEPCHOKE_MC NONE ± 7.0 ± 11.1 ± 4. KIRU IO POLARX4 2.5.2-esa3 SEPCHOKE MC SPKE TO THE SPK	PEN2			8.51/6.110	LEIAR25.R4	LEIT	40.7 ± 3.9			
## WROC LEICA GR25									59.9 ± 2.5	
SEPTENTR IO SEPTENTR CEBR IO POLARX4TR 2.5.2 JAVRINGANT_DM NONE ± 8.1 ± 8.7 ± 7. SEPTENTR SEPTENTR SEPTENTR SEPTENTR IO POLARX4 2.5.2-esa 3 SEPCHOKE MC SPKE Update				•						
BRUX IO POLARX4TR 2.5.2 JAVRINGANT_DM NONE ± 8.1 ± 8.7 ± 7. CEBR IO POLARX4 2.5.2-esa3 SEPCHOKE_MC NONE ± 7.0 ± 11.1 ± 4. SEPTENTR KIRU IO POLARX4 2.5.2-esa3 SEPCHOKE MC SPKE TO SP	WROC	LEICA	GR25	03	LEIAR25.R4	LEIT	63.1 ± 1.5	8.1	84.7 ± 2.0	
SEPTENTR CEBR IO POLARX4 2.5.2-esa3 SEPCHOKE_MC NONE ± 7.0 ± 11.1 ± 4. KIRU IO POLARX4 2.5.2-esa3 SEPCHOKE MC SPKE AT GOP 7 Station was										
CEBR IO POLARX4 2.5.2-esa3 SEPCHOKE_MC NONE ± 7.0 ± 11.1 ± 4.5 SEPTENTR POLARX4 2.5.2-esa3 SEPCHOKE MC SPKE Updated 15-08-20 (Javad DELTA GT3 receiver at GOP7 station was			POLARX4TR	2.5.2	JAVRINGANT_DM	NONE	± 8.1	± 8.7	± 7.7	
SEPTENTR POLARX4 25.2-esa 3 SEPCHOKE MC SPKE Updated 15-08-20 (Javad DELTA GT3 receiver at GOP 7 station was										
Updated to 2015-08-20 (Javad Delta GT3 receiver at GOP7 station was			POLARX4	2.5.2-esa3	SEPCHOKE_MC	NONE	± 7.0	± 11.1	± 4.8	
			DOLADY4	2.5.22	CEDCHOKE MC	CDICE		. 12.0	. 7.0	
	Undat	64 to 50	115-08-20	Clavad DFI	TA GT3 rece	IVEL 91	GOP7.4	tation w	as ± 7.0	
repraced by introductive receiver of $\frac{\pm 7.3}{4000000000000000000000000000000000000$										
	Lehrac	eu by I	nnume+ivet	14.9.47eee1ver	041700036C	Dry L	± 1.1 -116.9 +	± 7.5	Ξ Ζ.1	

BeiDou to GPS time offset: GFZ vs. UPA/brdc

based on gbz<www><d>.bias at cddis.gsfc.nasa.gov/mgex

Galileo to GPS Time Offset: GFZ vs.UPA/brdc

Conclusions

- Positioning and timing cannot be decoupled in multiGNSS positioning/navigation: 3 m

 10 ns is a reasonable level of sync one can require
- We have shown that the broadcast time sync polynomial contains considerable biases in the time scales, particularly for BeiDou, forcing to include a specific time bias in the navigation solution
- Our analysis suggests that the SP3 ephemeris generated by GFZ for GPS Glonass Galileo and Beidou has a clock correction which defines a homogeneous time scale to within +/- 10 ns. Positioning with brdc and sp3 ephemeris yields differences to within +/- 1 m rms and TZD to within 0.1 m rms. However the clock model still reflects the biases of the receivers which were used!
- We present a first analysis of calibration constants which are specific of receivers at the various sites. We use Septentrio as reference.
- We keep monitoring GNSS specific time biases and receiver specific time biases, in an attempt to precisely identify all those calibration constants which are necessary to know for a full interoperability of the various GNSSs with a variety of receivers.