

Royal Observatory of Belgium

Near Real-Time Monitoring of the Solar Activity Impact on European Region from the EPN Data

J.-M. Chevalier and N. Bergeot

Introduction

Ionosphere

Introduction

Ionosphere vs GNSS

Electrically charged media affects the radio-wave propagation (depending on the frequency)

=> ionospheric delay $I_{1,2}$

Monitoring

ROB-IONO Software

Bergeot N., et al. (2014) J. Space Weather Space Clim.

- Input data: real-time data from the EPN (~150 stations)
- <u>Near real-time TEC maps over Europe</u>
 <u>+ variability</u>
 - since 2012

Sampling rate	: 15 min	
Grid extent	: Long : Lat	W15° / E25° N35° / N62°
Grid resolution	: 0.5°x0.5°	
Latency	: ~3 minutes	

IONOSPHERE AND SPACE WEATHER

Contact: iono@oma.be

Last lonospheric Events

- 2017-09-07 : Ionospheric activity due to Solar Flare (more here)
- 2017-09-06 : Space weather event due to Solar Radio Burst (more here)
- 2017-08-31 : Ionospheric activity due to Geomagnetic Activity (more here)
- ... more events here

Near-Real Time Ionospheric Products

Vartical Total Electron Content (VTEC) estimated in Near Real-Time (NRT) every 15 minutes from EUREF Permanent Network (EPN) GPS data. More...

Services

- Interactive Maps: display animated VTEC maps (movie) for a requested period and VTEC value at a given location and time. (4-5 sec to load).
- Statistical Maps and Plots: statistics to compare the ionosphere for a requested time with respect to the 15 previous days.
- <u>VTEC Time Series</u>: the VTEC evolution over time and its median of the 15 previous days (24h prediction), extracted from the VTEC maps at 3 different locations (North of Europe, Brussels and South of Europe).
- Data are publicly available in IONEX format at <u>ftp://gnss.oma.be/gnss/products/IONEX/</u>. We request that users include a citation or an acknowledgment when using ROB VTEC data or products results in a publication. See <u>disclaimer and copyright</u> for more information.

Solar Radio Burst Warnings for GNSS Applications in Europe

Solar Radio Bursts (SRB) emitted at the GNSS frequencies can affect the GNSS signal reception. To detect such event, <u>a near-real time SRB</u> warning system with a 4-level index was set in Europe using the real-time EUREF Permanent Network.

Monitoring based on Real-Time EPN Data

www.gnss.be

1) Ionospheric Total Electron Content (TEC)

- Interactive TEC maps
- Statistical TEC maps
- TEC Time Series at 3 locations (North-Brussels-South)
- TEC Data (IONEX) <u>ftp://gnss.oma.be/gnss/products/IONEX/</u>
- Event Description

2) Solar Radio Burst (SRB)

- Warning System
- Event Description

Services

Statistical TEC Maps

Normal ionospheric TEC behaviour : median of the VTEC for the 15 previous days

Saint Patrick storm March 17th 2015 event

http://www.gnss.be/Atmospheric_Maps/static_ionospheric_maps.php

Services Ionospheric Event Description

SUMMARY OF THE EVENT: A solar flare occurred the 6/09/2017 generating a sudden small increase of TEC at noon with higher variability of TEC. The next days, the arrival of the CME generated disturbances in the North during night-time of the 7/09/2017 and at the end of the day 07/09/2017. An increase of TEC was also observed in the South the 07 and 08/09/2017. A depletion of TEC followed the following day 09/09/2017

TEC extracted from the NRT maps

TEC current

15-days median TEC TEC Variability

+ Links to interactive and statistical maps, and origin of the event sidc.oma.be

2012-2017 (43 events)

Services Ionospheric Event Description

SUMMARY OF THE EVENT: A solar flare occurred the 6/09/2017 generating a sudden small increase of TEC at noon with higher variability of TEC. The next days, the arrival of the CME generated disturbances in the North during night-time of the 7/09/2017 and at the end of the day 07/09/2017. An increase of TEC was also observed in the South the 07 and 08/09/2017. A depletion of TEC followed the following day 09/09/2017

Climatology of the lonosphere

Empirical Model, least-square adjustment with :

- 8th order polynomial function with monthly coefficients between the TEC and F10.7P
- Discretization with respect to the solar activity phases

Bergeot et al. 2015, EGU

Climatology of the lonosphere

IAG – Real-Time Ionospheric Monitoring Working Group

Comparison of current lonospheric Models: March 17, 2015 - St Patrick Storm

Ionospheric TEC Maps

Garcia-Rigo et al. 2017, EGU

Climatology of the lonosphere

IAG – Real-Time Ionospheric Monitoring Working Group

Improving GNSS single frequency positioning

Position of the GNSS station at Brussels during 2015 March Storm (*W. Huang and P. Defraigne*)

Bergeot et al. 2015, URSI

Ionospheric TEC Maps

Correction using Klobucharionospheric modelEast10 ± 80 cmNorth100 ± 140 cmUp120 ± 210 cm

Correction using ROB-TEC products East 6 ± 40 cm North 9 ± 66 cm Up 76 ± 150 cm

Climatology of the lonosphere

IAG – Real-Time Ionospheric Monitoring Working Group

-60

55

50

45

40

35

Solar Eclipse 20th Mar. 2015

Improving GNSS single frequency positioning

Climatology of the lonosphere

IAG – Real-Time Ionospheric Monitoring Working Group

Improving GNSS single frequency positioning

Solar Eclipse 20th Mar. 2015 RT and post

Belehaki et al. 2015, SWSC Journ.

Climatology of the lonosphere

IAG – Real-Time Ionospheric Monitoring Working Group

Improving GNSS single frequency positioning

Solar Eclipse 20th Mar. 2015 RT and post

Calibration of LOFAR radio telescope

Sotomayor-Beltran et al. 2013 Astronomy & Astrophysics

Use of ROB-TEC maps to remove the timevariable ionospheric Faraday rotation contribution

Climatology of the lonosphere

IAG – Real-Time Ionospheric Monitoring Working Group

Improving GNSS single frequency positioning

Solar Eclipse 20th Mar. 2015 RT and post

Ionospheric TEC Maps

3D Ionosphere Nowcasting and Forecasting for ESA Space Situational Awareness

Calibration of LOFAR radio telescope

Solar Radio Bursts

- The Sun emits in radio over a wide frequency range (from few kHz to GHz)
- Solar Radio Bursts (SRB) are intense radio emissions (durations from 10s to few hours)
- SRBs increase the noise level of GNSS ground stations
- Carrier-to-Noise density (C/N₀) [35; 55] dB-Hz

Cerruti et al. 2006

Introduction SRB Impact on GNSS Signal Reception

EPN data for SRB monitoring

RT monitoring of the abnormal fade of GNSS signal reception due to SRB at the 2 GNSS frequency bands L1 and L2

Chevalier et al., URSI GASS 2017

- C/N₀ (dB-Hz) extracted from RINEX files (S1-S2)
- But no standardized unit

Monitoring

 \Rightarrow Please provide C/N₀ instead of Signal to Noise Ratio (SNR) (manufacturer/receiver dependent)

Level	GNSS ∆C/N₀ Fade	Effect	
Quiet	>-1dB-Hz	none	
Moderate	-1 dB-Hz	SRB detected but should not impact GNSS applications	
Strong	-3 dB-Hz	Potential impact on GNSS applications	
Severe	-10 dB-Hz	Potential failure of the GNSS receivers	

IONOSPHERE AND SPACE WEATHER

Contact: iono@oma.be

Last lonospheric Events

- 2017-09-07 : Ionospheric activity due to Solar Flare (more here)
- 2017-09-06 : Space weather event due to Solar Radio Burst (more here)
- 2017-08-31 : Ionospheric activity due to Geomagnetic Activity (more here)
- ... more events here

Near-Real Time Ionospheric Products

Vartical Total Electron Content (VTEC) estimated in Near Real-Time (NRT) every 15 minutes from EUREF Permanent Network (EPN) GPS data. More...

Services

- Interactive Maps: display animated VTEC maps (movie) for a requested period and VTEC value at a given location and time. (4-5 sec to load).
- Statistical Maps and Plots: statistics to compare the ionosphere for a requested time with respect to the 15 previous days.
- <u>VTEC Time Series</u>: the VTEC evolution over time and its median of the 15 previous days (24h prediction), extracted from the VTEC maps at 3 different locations (North of Europe, Brussels and South of Europe).
- Data are publicly available in IONEX format at <u>ftp://onss.oma.be/gnss/products/IONEX/</u>. We request that users include a citation or an acknowledgment when using ROB VTEC data or products results in a publication. See <u>disclaimer and copyright</u> for more information.

Solar Radio Burst Warnings for GNSS Applications in Europe

Solar Radio Bursts (SRB) emitted at the GNSS frequencies can affect the GNSS signal reception. To detect such event, <u>a near-real time SRB</u> warning system with a 4-level index was set in Europe using the real-time EUREF Permanent Network.

Monitoring based on Real-Time EPN Data

www.gnss.be

1) Ionospheric Total Electron Content (TEC)

- Interactive TEC maps
- Statistical TEC maps
- TEC Time Series at 3 locations (North-Brussels-South)
- TEC Data (IONEX) ftp://gnss.oma.be/gnss/products/IONEX/
- Event Description

2) Solar Radio Burst (SRB)

- Warning System
- Event Description

Services Event description: SRB 6th Sep. 2017

SUMMARY OF THE EVENT: The solar radio bursts of the 06/09/2017 impacted the GPS signal reception at both frequencies L1 and L2. On L1, two fades above 1dB-Hz were detected at 12h01 and 12h05. On L2, a first fade above 3dB-Hz which could potentially affect the GNSS application, occurred for 3 min with a maximum of -6.25±1.6dB-Hz at 12h02. It was followed by a second lower fade above 1dB-Hz at 13h03. For additional information about the burst on a larger frequency spectrum see at <u>SIDC Humain</u> Radioastronomy Station.

SUMMARY Space Weather Monitoring based on EPN

IONOSPHERE

- TEC maps (+TEC variability) over Europe since 2012 in near-real time (0.5°x0.5° grids, 15 min.)
- Visualisation of the ionospheric activity : <u>www.gnss.be</u>
- Data: <u>ftp://gnss.oma.be</u>
- Scientific applications : Climatology of the Ionosphere, GNSS single frequency positioning(...)

SOLAR RADIO BURST

- GNSS signal reception is monitored in real-time
- SRB Warning System
- Register at the email alert : <u>iono@oma.be</u>

Thank you

Back-up slides

Monitoring

ROB-IONO software

SWSC Journal of Space Weather and Space Climate

Bergeot N., et al. (2014) J. Space Weather Space Climate

- Post processing all available GPS+GLONASS data
- Time independent, tested and validated during quiet time and, minor and major events

HALLOWEEN STORM 2003

Services

Contact: iono@gnss.be

Interactive VTEC maps

2017-10-19 (day 292) from 09:45 to 10:00 UTC Finla Epoch 2017-10-19 09 ▼ h 45 ▼ min Last map time: 60°00'N Days backward: 1/4 ¥ Estor Refresh Letto Layers opacity Lituanie Dandmark VTEC: Royaume-Uni Variability: Bié Animation Irlande Pologne Londres 2017-10-19 from 09:45 to 10:00 UTC Allemagne 50:00'N Play Slovaquie Speed: Hongrin France Mouse position Roundan ж Lon : 18.45°, Lat : 49.20° Lon : 13.96 Lat : 37.35 iprbie. VTEC: 17.19 TECU Bulgar Portugal O'N spagne Grèce 500 km 05:0000nneegoebocgraphogeboc201710ebolg, ORIQ5-bbee Conzidebosed utilization 5'00'W 10'00'W Ionospheric Range Error (L1) in m 00.0 1.62 3.24 4.86 6.48 8.10 9.72 ≥11.34 2 3 5 4 27 10 20 30 40 50 60 ≥70 TEC Variability in TECu TEC in TECU

Click on the map to get the Vertical Total Electron Content (VTEC) value at a particular point.

http://www.gnss.be/Atmospheric Maps/dynamic ionospheric maps.php

SRB Impact on GNSS applications

Introduction